Hydrothermally treated cement - based building materials . Past , present , and future *

نویسنده

  • A. Ray
چکیده

Hydrothermally cured or autoclaved cement-based building products have provided many challenges to researchers, manufacturers, and users since their inception nearly 100 years ago. The advantages, including the development of high strength within a few hours and a reduction of drying shrinkage, of the hydrothermal curing process have resulted in a variety of building products; inevitably, the technology of their production has undergone many stages of refinement. With the advent of nonconventional starting materials for the production of modern cements, and the push to utilize renewable resources to form blended cements, the chemical and physical make-up of hydrothermally cured building materials have changed considerably in recent years and will continue to change. It is, therefore, important to understand the chemical reactions taking place in an autoclave, and the consequent phase developments, if building materials produced by this process continue to be successful in the long term. A wide range of analytical techniques exists for characterizing the phase development in cement-based materials. The purpose of this paper is to illustrate the strength of thermal methods, especially when used in combination with other analytical techniques, in the understanding of hydrothermal reactions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Development of near-zero water consumption cement materials via the geopolymerization of tektites and its implication for lunar construction

The environment on the lunar surface poses some difficult challenges to building long-term lunar bases; therefore, scientists and engineers have proposed the creation of habitats using lunar building materials. These materials must meet the following conditions: be resistant to severe lunar temperature cycles, be stable in a vacuum environment, have minimal water requirements, and be sourced fr...

متن کامل

Effect of eugenol and non-eugenol containing temporary cement on permanent cement retention and microhardness of cured composite resin.

This present study had three aims: 1) to evaluate the bond strengths of carboxylate and resin cements in cementing cast Co-Cr crowns to pretreatment of composite resin cores with eugenol and non-eugenol containing temporary cements, 2) to determine the microhardness of composite resin treated with temporary cement, 3) to view the surface differences of composite resin with SEM. The composite co...

متن کامل

Waste Management of Building Ceramic Materials Using the DfD Technique: Sustainable Development and Environmentally Friendly

Nowadays, in modern societies, growing activities in construction affairs and their economic development have been resulted construction wastes and so much demolition in the past three decades. Most of these wastes have not been treated and therefore caused severe damages to the environment. In this research, after reviewing construction and demolition management methods and their accesso...

متن کامل

Influence of Atmospheric Physical Effects on Static Behavior of Building Plate Components Made of Fiber-Cement-Based Materials

The paper presents the brief information on particular results of experimental study focused to the problems of behavior of structural plated components made of fiber-cement-based materials and used in building constructions, exposed to atmospheric physical effects given by the weather changes in the summer period. Weather changes represented namely by temperature and rain cause also the change...

متن کامل

Thermal Properties of Cement-Based Composites for Geothermal Energy Applications

Geothermal energy piles are a quite recent renewable energy technique where geothermal energy in the foundation of a building is used to transport and store geothermal energy. In this paper, a structural-functional integrated cement-based composite, which can be used for energy piles, was developed using expanded graphite and graphite nanoplatelet-based composite phase change materials (CPCMs)....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003